A CHARACTERIZATION OF BEST Φ-APPROXIMANTS

BY

D. LANDERS AND L. ROGGE

ABSTRACT. Let T be an operator from an Orlicz space L_{Φ} into itself. It is shown in this paper that four algebraic conditions and one integration condition assure that T is the best Φ -approximator, given a suitable σ -lattice.

Introduction and notations. Let $(\Omega, \mathcal{C}, \mu)$ be a finite measure space and Φ : $\mathbf{R} \to [0, \infty)$ a strictly convex symmetric function with $\Phi(0) = 0$. Denote by $L_{\Phi}(\Omega, \mathcal{C}, \mu)$ respectively $L_{\Phi}^{\infty}(\Omega, \mathcal{C}, \mu)$ the system of all μ -equivalence classes of \mathcal{C} -measurable functions f such that $\int \Phi(\alpha f) d\mu < \infty$ for some $\alpha > 0$ respectively for all $\alpha > 0$. If $\Phi(x) = |x|^p$ then $L_{\Phi} = L_{\Phi}^{\infty}$ and we obtain the spaces $L_{\pi}(p > 1)$.

Let $\mathcal{C} \subset \mathcal{C}$ be a σ -lattice, i.e. a system which is closed under countable unions and intersections and contains \mathcal{O} and Ω . Denote by $L_{\Phi}(\mathcal{C})$ the system of all equivalence classes in $L_{\Phi}(\Omega, \mathcal{C}, \mu)$, containing a \mathcal{C} -measurable function, i.e. a function $f: \Omega \to \overline{\mathbb{R}}$ with $\{f > a\} \in \mathcal{C}$ for all $a \in \mathbb{R}$. If $L_{\Phi} = L_{\Phi}^{\infty}$ it was shown in [11, Corollary 5], that for each $f \in L_{\Phi}(\Omega, \mathcal{C}, \mu)$ there exists a unique $\mu_{\Phi}(f|\mathcal{C}) \in L_{\Phi}(\mathcal{C})$ such that

$$(*) \qquad \int \Phi(f - \mu_{\Phi}(f|\mathcal{C})) \ d\mu = \inf \Big\{ \int \Phi(f - g) \ d\mu \colon g \in L_{\Phi}(\mathcal{C}) \Big\}.$$

We call $\mu_{\Phi}(f|\mathbb{C})$ the best Φ -approximant of f, given \mathbb{C} . For p>1 and $\Phi(x)=|x|^p$ we write $\mu_p(f|\mathbb{C})$ instead of $\mu_{\Phi}(f|\mathbb{C})$. The concept of best Φ -approximants, given \mathbb{C} , covers and unifies important concepts of probability theory: the classical concept of conditional expectation $(\Phi(x)=|x|^2, \mathbb{C} \sigma$ -field), the concept of conditional expectation given a σ -lattice $(\Phi(x)=x^2, \mathbb{C} \sigma$ -lattice, see [4], [5]), Ando-Amemiya's [2] concept of p-predictors $(\Phi(x)=|x|^p, \mathbb{C} \sigma$ -lattice). Best approximants given σ -lattices play an essential role in several fields of application, e.g. in Bayes-estimation, prediction theory and isotonic regression (see [4]).

It is the aim of this paper to give conditions on an operator $T: L_{\Phi} \to L_{\Phi}$ assuring that T is the best Φ -approximator, given a suitable σ -lattice $\mathcal{L} \subset \mathcal{L}$, i.e. $Tf = \mu_{\Phi}(f|\mathcal{L})$ for all $f \in L_{\Phi}$.

Many authors have investigated such characterization problems for special cases. Characterization results for classical conditional expectations were given in [1], [3], [7], [12], [13], [14]; a characterization for a conditional expectation, given a

Received by the editors October 1, 1980.

AMS (MOS) subject classifications (1970). Primary 46E30; Secondary 41A50.

Key words and phrases. Best approximants, σ-lattices, conditional expectations, characterization.

 σ -lattice, can be found in [8] and [12], a characterization for p-predictors is given in [10] and a characterization for conditional p-means is contained in [12]. Hence much is known for $\Phi(x) = x^2$, less for $\Phi(x) = |x|^p$ (p > 1) and nothing for general Φ . It is the purpose of this paper to close this gap. In our theorem we prove a characterization result for best Φ -approximants, given a σ -field. Four of the five describing conditions are purely algebraic; only the fifth condition introduces the measure μ and the function Φ . We consider this an advantage since algebraic conditions are nicer and easier to verify than integration conditions.

The result. Let $(\Omega, \mathcal{C}, \mu)$ be a finite measure space, $\Phi \colon \mathbf{R} \to [0, \infty)$ strictly convex, symmetric with $\Phi(0) = 0$ and assume that $L_{\Phi} = L_{\Phi}^{\infty}$. Let $\mathcal{C} \subset \mathcal{C}$ be a σ -lattice and put $Tf := \mu_{\Phi}(f|\mathcal{C})$, $f \in L_{\Phi}$. Then the operator $T: L_{\Phi} \to L_{\Phi}$ has the following property.

- (i) T is translation invariant, i.e. T(f + a) = Tf + a for all $a \in \mathbb{R}$.
- (ii) T is idempotent, i.e. TTf = Tf.
- (iii) T is monotone, i.e. $f \le g$ implies $Tf \le Tg$.

Properties (i) and (ii) follow directly from the definition of T, (iii) follows from [11, Theorem 18].

Properties (i)-(iii) were used in most of the cited characterization results. A further property, namely the positive homogeneity of T (i.e. T(af) = aTf for $a \ge 0$), has been used in all characterizations up to now. Though $Tf = \mu_{\Phi}(f|\mathcal{L})$ is positive homogeneous if $\Phi(x) = |x|^p$, p > 1, unfortunately T is not positive homogeneous any more for general Φ . However, even in the general case T has another simple algebraic property, namely

(iv)
$$T(f \pm \frac{1}{2}Tf) = (1 \pm \frac{1}{2})Tf$$
.

The case $T(f-\frac{1}{2}Tf)=\frac{1}{2}Tf$ follows directly from the definition of $Tf=\mu_{\Phi}(f|\mathcal{L})$. To see $T(f+\frac{1}{2}Tf)=\frac{3}{2}Tf$ let $h\in L_{\Phi}(\mathcal{L})$ be given. As $Tf=\mu_{\Phi}(f|\mathcal{L})$ and Φ is convex we have

$$\int \Phi\left(\left(f + \frac{1}{2}Tf\right) - \frac{3}{2}Tf\right) d\mu = \int \Phi(f - Tf) d\mu \le \int \Phi\left(f - \frac{2}{3}h\right) d\mu$$

$$= \int \Phi\left(\frac{1}{3}(f - Tf) + \frac{2}{3}\left(f + \frac{1}{2}Tf - h\right)\right) d\mu$$

$$\le \frac{1}{3}\int \Phi(f - Tf) d\mu + \frac{2}{3}\int \Phi\left(f + \frac{1}{2}Tf - h\right) d\mu$$

which implies $T(f + \frac{1}{2}Tf) = \frac{3}{2}Tf$.

The following theorem shows that if we add to the algebraic conditions (i)-(iv) on T only one integration condition on T (namely that 0 is not a better Φ -approximant of f than Tf), then each operator with these properties is necessarily of the form $Tf = \mu_{\Phi}(f|\mathcal{L})$ for an appropriate σ -lattice $\mathcal{L} \subset \mathcal{L}$. The added integration condition is a generalization of Dykstra's condition for $\Phi(x) = x^2$ (see [8]); for $\Phi(x) = |x|^p$ this condition is also used in [10].

We remark that the following characterization result is the first characterization result for σ -lattices which uses only *one* integration condition. For the case

 $\Phi(x) = x^2$ Dykstra [8] needs besides three algebraic conditions (namely (ii), (iii) and positive homogeneity) three integration conditions (namely (v), $\int Tf d\mu = \int f d\mu$ and $||Tf - Tg||_2 \le ||f - g||_2$). In [12] five algebraic conditions and two integration conditions are used for the case $\Phi(x) = |x|^p$, p > 1.

THEOREM 1. Let $(\Omega, \mathcal{C}, \mu)$ be a finite measure space and $\Phi: \mathbb{R} \to \mathbb{R}_+$ be a symmetric, strictly convex, differentiable function with $\Phi(0) = 0$ such that $L_{\Phi} = L_{\Phi}^{\infty}$. Let $T: L_{\Phi}(\Omega, \mathcal{C}, \mu) \to L_{\Phi}(\Omega, \mathcal{C}, \mu)$ be an operator with the following properties.

- (i) T is translation invariant.
- (ii) T is idempotent.
- (iii) T is monotone.
- (iv) $T(f \pm \frac{1}{2}Tf) = (1 \pm \frac{1}{2})Tf$.
- (v) $\int \Phi(f Tf) d\mu \leq \int \Phi(f) d\mu$.

Then there exists a σ -lattice $\mathcal{L} \subset \mathcal{Q}$ such that $Tf = \mu_{\Phi}(f|\mathcal{L})$ for all $f \in L_{\Phi}$. If, moreover, T(-Tf) = -Tf, then there exists a σ -algebra $\mathcal{Q}_0 \subset \mathcal{Q}$ such that $Tf = \mu_{\Phi}(f|\mathcal{Q}_0)$ for all $f \in L_{\Phi}$.

PROOF. From the properties of Φ we obtain (see e.g. [9])

(1) Φ' is strictly increasing, continuous, $\Phi'(0) = 0$ and $\Phi'(-x) = -\Phi'(x)$. Hence $0 \le x\Phi'(x) \le \int_x^{2x} \Phi'(t) dt \le \Phi(2x)$, $x \ge 0$. As $L_{\Phi} = L_{\Phi}^{\infty}$ this implies $h\Phi'(h) \in L_1$ if $0 \le h \in L_{\Phi}$. For h = |f| + |g| this yields together with (1)

(2)
$$\Phi'(f)g \in L_1 \text{ for all } f, g \in L_{\Phi}.$$

Applying $T(g - \frac{1}{2}Tg) = \frac{1}{2}Tg$ to $g = f - (1 - 1/2^n)Tf$ one obtains inductively

(3)
$$T(f - (1 - 1/2^n)Tf) = (1/2^n)Tf, \quad n \in \mathbb{N}.$$

As by (i) and (3) for all $a \in \mathbf{R}$

$$f - Tf = f - (1 - 1/2^n)Tf + a - T(f - (1 - 1/2^n)Tf + a)$$

we obtain from (v) that

(4)
$$\int \Phi(f-Tf) d\mu \leq \int \Phi(f-(1-1/2^n)Tf+a) d\mu, \quad n \in \mathbb{N}.$$

Hence $n \to \infty$ implies by the Theorem of Lebesgue

$$\int \Phi(f - Tf) \ d\mu \le \int \Phi(f - Tf + a) \ d\mu, \quad \text{for all } a \in \mathbf{R}.$$

Therefore the function $a \to \int \Phi(f - Tf + a) d\mu$, $a \in \mathbb{R}$, attains its minimum at a = 0. Since $\sup_{|a| \le 1} |\Phi'(f - Tf + a)| \le \Phi'(|f - Tf| + 1) \in L_1$ by (1) and (2), we obtain from the Theorem of Lebesgue that

(5)
$$\int \Phi'(f-Tf) d\mu = 0.$$

In the next step we show

We prove only the increasing case, the decreasing case runs analogously. Since $Tf_n \leq Tf_{n+1} \leq Tf$ by (iii), we obtain from (5) and the Theorem of Lebesgue (use (1)

and (2)) that

$$\int \Phi'(f-Tf) \ d\mu = 0 = \lim_{n \in \mathbb{N}} \int \Phi'(f_n - Tf_n) \ d\mu = \int \Phi'\Big(f - \lim_{n \in \mathbb{N}} Tf_n\Big) \ d\mu.$$

Since $\lim_{n\in\mathbb{N}} Tf_n \leq Tf$ and Φ' is strictly increasing, this implies $Tf = \lim_{n\in\mathbb{N}} Tf_n$, i.e. (6). Put $H = \{ f \in L_{\Phi} : Tf = f \}$. From (i), (iv) and (6) we obtain

(7)
$$H + b \subset H \text{ for all } b \in \mathbf{R}.$$

(8)
$$\left(\frac{3}{2}\right)^n H \subset H, \quad n \in \mathbb{N}.$$

(9)
$$f_n \in H$$
, $f_n \uparrow f \in L_{\Phi}$ or $f_n \downarrow f \in L_{\Phi} \Rightarrow f \in H$.

We show that furthermore

$$(10) f, g \in H \Rightarrow f \land g, \quad f \lor g \in H.$$

We prove only $f \vee g \in H$, the case $f \wedge g \in H$ runs similarly. As $T(f \vee g) > Tf \vee Tg = f \vee g$ by (iii) and $\int \Phi'(f \vee g - T(f \vee g)) d\mu = 0$ by (5) we obtain, using $\Phi'(0) = 0$ and $\Phi'(x) < 0$ for x < 0, that $f \vee g = T(f \vee g)$, i.e. $f \vee g \in H$.

Let $\mathcal{L} = \{A \in \mathcal{L}: 1_A \in H\}$. As T0 = 0, T(1) = 1 by (v) and (i), \mathcal{L} is a σ -lattice according to (9) and (10). If additionally T(-Tf) = -Tf, then \mathcal{L} is a σ -field, since $T1_A = 1_A$ implies by (i) that

$$T(1_{\overline{A}}) = T(1 - 1_{A}) = 1 + T(-1_{A}) = 1 - T1_{A} = 1_{\overline{A}}.$$

Now we show that

(11)
$$H = L_{\Phi}(\mathcal{C}).$$

Since $((\frac{3}{2})^n(f-b) \vee 0) \wedge 1 \uparrow 1_{\{f>b\}}$, $f \in H$ implies by (7)–(10) that $1_{\{f>b\}} \in H$. Hence $\{f>b\} \in \mathcal{E}$, whence $f \in L_{\Phi}(\mathcal{E})$. It remains to prove $L_{\Phi}(\mathcal{E}) \subset H$. Let $f \in L_{\Phi}(\mathcal{E})$. According to (7) and (9) we may assume $f \geqslant 0$. Since

$$\sup \left\{ \frac{\nu}{2^n} 1_{\{f>\nu/2^n\}} : \nu = 0, \ldots, n2^n \right\} \uparrow f$$

it suffices to prove according to (9) and (10) that $C \in \mathcal{L}$ implies $a1_C \in H$ for all $a \ge 0$. According to (8) we may assume $0 \le a \le 1$. Thus we have to prove $T1_C = 1_C$ implies $T(a1_C) = a1_C$, $0 \le a \le 1$. As T is monotone by (iii) we have $T(a1_C) \le T(a) \land T(1_C) = a1_C$. Hence (5) implies $T(a1_C) = a1_C$, i.e. $a1_C \in H$. Thus (11) is shown.

In the next step we prove that

(12)
$$\int \Phi'(f-Tf)g \ d\mu \leq 0 \quad \text{if } f \in L_{\Phi}, g \in L_{\Phi}(\mathcal{C}).$$

Using (i), (6) and (2) we may w.l.g. assume that $0 \le f \le b$. Using (5) and (2) we may w.l.g. assume that $0 \le g \in L_{\Phi}(\mathbb{C})$. As each \mathbb{C} -measurable function $g \ge 0$ is increasing limit of \mathbb{C} -measurable simple functions (see e.g. [4, p. 313]), it suffices to prove (12) for $g = 1_C$ with $C \in \mathbb{C}$. Since $b1_C \in L_{\Phi}(\mathbb{C}) = H$ by (11) we have $T(b1_C) = b1_C$. As T is monotone and $0 \le f \le b$ we obtain $T(f1_C) \le Tf$ and $T(f1_C) \le T(b1_C) = b1_C$. Hence $T(f1_C) \le T(f1_C) = b1_C$ and (1) and (5) imply that

$$\int \Phi'(f - Tf) 1_C d\mu = \int \Phi'(f 1_C - (Tf) 1_C) d\mu \le \int \Phi'(f 1_C - T(f 1_C)) d\mu = 0.$$

Thus (12) is shown.

Now we prove that

(13)
$$\int \Phi'(f-Tf)Tf d\mu \geq 0 \quad \text{if } f \in L_{\Phi}.$$

Using (1) and (2) we obtain from the Theorem of Lebesgue that the function $\varphi(t) := \int \Phi(f - tTf) d\mu$, $t \in \mathbb{R}$, is differentiable. Let $t_n = 1 - 1/2^n$; we obtain from (4), applied to a = 0 that

$$\varphi'(1) = \lim_{n \in \mathbb{N}} \frac{\varphi(1) - \varphi(t_n)}{1 - t_n} \le 0.$$

As $\varphi'(1) = \int \Phi'(f - Tf)(-Tf) d\mu$ by (2) and the Theorem of Lebesgue, this implies (13).

By (12) and (13) we have

(14)
$$\int \Phi'(f-Tf)(g-Tf) d\mu \leq 0 \quad \text{if } f \in L_{\Phi}, g \in L_{\Phi}(\mathcal{C}).$$

Since T(Tf) = Tf by (ii), we have $Tf \in H$. Hence $Tf \in L_{\Phi}(\mathbb{C})$ by (11). To prove $Tf = \mu_{\Phi}(f|\mathbb{C})$ we have therefore to show that

(15)
$$\int \Phi(f-Tf) d\mu \leq \int \Phi(f-g) d\mu \quad \text{for all } g \in L_{\Phi}(\mathcal{C}).$$

Let $f \in L_{\Phi}$, $g \in L_{\Phi}(\mathcal{C})$ be given and put

$$\Psi(\alpha) := \int \Phi(f - (\alpha T f + (1 - \alpha)g)) d\mu, \quad \alpha \in \mathbf{R}.$$

Then ψ is a convex function as Φ is a convex function. By (2), the Theorem of Lebesgue and (14) we obtain that

(16)
$$\psi'(1) = \int \Phi'(f - Tf)(g - Tf) d\mu \leq 0.$$

As ψ is convex, $\psi'(\alpha)$, $\alpha \in \mathbb{R}$, is a nondecreasing function. Hence $\psi(0) > \psi(1)$ by (16), i.e. (15) holds. This finishes the proof.

The following lemma clarifies the connection of our integration condition (v) and other integration conditions.

LEMMA 2. Let $(\Omega, \mathcal{Q}, \mu)$ and Φ be as in the theorem above. Let $T: L_{\Phi} \to L_{\Phi}$ be an operator with $T(f - \frac{1}{2}Tf) = \frac{1}{2}Tf$. Then the following three conditions are equivalent.

(v)
$$\int \Phi(f - Tf) d\mu \leq \int \Phi(f) d\mu$$
 for $f \in L_{\Phi}$,
(v*) $\int \Phi(f - Tf) d\mu \leq \int \Phi(f - aTf) d\mu$ for $f \in L_{\Phi}$ and some $a = a(f) \in [0, 1)$,
(v**) $\int \Phi'(f) Tf d\mu \geq 0$ for $f \in L_{\Phi}$.

PROOF. (v) obviously implies (v*). Let $f \in L_{\Phi}$ be given and put $\varphi(a) = \int \Phi(f - aTf) d\mu$, $a \in \mathbb{R}$. Since Φ is a convex function, φ is a convex function, too.

Using (1) and (2) of the proof of the preceding theorem we obtain from the Theorem of Lebesgue that the function φ is differentiable with

(1)
$$\varphi'(a) = -\int \Phi'(f - aTf)Tf d\mu, \qquad a \in \mathbf{R}.$$

If (v^*) is fulfilled, then $\varphi(a) \ge \varphi(1)$ for some $0 \le a < 1$. As φ is convex and differentiable, φ' is nondecreasing; hence $\varphi'(0) \le 0$. Together with (1) this implies

(v**). Let (v**) be fulfilled. Since $T(f - \frac{1}{2}Tf) = \frac{1}{2}Tf$ we have $T(f - (1 - 1/2^n)Tf) = (1/2^n)Tf$ (see (3) in the proof of Theorem 1). Hence (1) and (v**) imply

$$\varphi'(1-1/2^n) = -\int \Phi'(f-(1-1/2^n)Tf)Tf \,d\mu$$

$$= -2^n \int \Phi'(f-(1-1/2^n)Tf)T(f-(1-1/2^n)Tf) \,d\mu \le 0.$$

Since φ is convex this directly implies $\varphi(0) \geqslant \varphi(1)$, i.e. (v).

Lemma 2 shows that the assertion of Theorem 1 holds also true if we replace condition (v) by

$$(\mathbf{v}^{**}) \int \Phi'(f) Tf d\mu \ge 0 \text{ for } f \in L_{\Phi}.$$

If $\Phi(x) = x^2$ condition (v**) means $\int fTf \, d\mu > 0$ for $f \in L_2$. The stronger integration condition $\int fTf \, d\mu > 0$ for $f \in L_2$ with $Tf \neq 0$ was used in [4] and [12] together with other integration conditions to characterize conditional expectations, given a σ -lattice.

If $\Phi(x) = |x|^p$, p > 1, condition (v^{**}) means $\int \operatorname{sgn} f |f|^{p-1} Tf d\mu > 0$ for $f \in L_p$. A weaker form of this integration condition was used together with p-expectation invariance (i.e. $\int |f - Tf|^{p-1} \operatorname{sgn}(f - Tf) d\mu = 0$) and five algebraic conditions to characterize conditional p-means, given a σ -lattice.

REFERENCES

- 1. T. Ando, Contractive projections in L_p-spaces, Pacific J. Math. 17 (1966), 391-405.
- 2. T. Ando and I. Amemiya, Almost everywhere convergence of prediction sequence in L_p (1 , Z. Wahrsch. Verw. Gebiete 4 (1965), 113–120.
 - 3. R. R. Bahadur, Measurable subspaces and subalgebras, Proc. Amer. Math. Soc. 6 (1955), 565-570.
- 4. R. E. Barlow, D. J. Bartholomew, J. M. Bremner and H. D. Brunk, Statistical inference under order restrictions, Wiley, New York, 1972.
- 5. H. D. Brunk, On an extension of the concept conditional expectation, Proc. Amer. Math. Soc. 14 (1963), 298-304.
- 6. _____, Uniform inequalities for conditional p-means given σ-lattices, Ann. Probab. 3 (1975), 1025-1030.
 - 7. R. G. Douglas, Contractive projections on an L₁-space, Pacific J. Math. 15 (1965), 443-462.
- 8. R. L. Dykstra, A characterization of a conditional expectation with respect to a σ-lattice, Ann. Math. Statist. 41 (1970), 698-701.
- 9. M. A. Krasnoselskii and Y. B. Rutickii, Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961.
- 10. D. Landers and L. Rogge, Characterization of p-predictors, Proc. Amer. Math. Soc. 76 (1979), 307-309.
 - 11. _____, Best approximants in L_{Φ} -spaces, Z. Wahrsch. Verw. Gebiete 51 (1980), 215-237.
 - 12. _____, Isotonic approximation in L_s, J. Approx. Theory (to appear).
- 13. S. C. Moy, Characterization of conditional expectation as transformation on function spaces, Pacific J. Math. 4 (1954), 47-63.
 - 14. J. Pfanzagl, Characterization of conditional expectations, Ann. Math. Statist. 38 (1967), 415-421.

Mathematisches Institut der Universität zu Köln, Weyertal 86-90, D-5000 Köln 41, Federal Republic of Germany

FACHBEREICH WIRTSCHAFTSWISSENSCHAFTEN/STATISTIK, UNIVERSITÄT KONSTANZ, POSTFACH 7733, D-7750 KONSTANZ, FEDERAL REPUBLIC OF GERMANY